Automatic skin lesion segmentation by coupling deep fully convolutional networks and shallow network with textons
نویسندگان
چکیده
منابع مشابه
Automatic skin lesion segmentation with fully convolutional-deconvolutional networks
This paper summarizes our method and validation results for the ISBI Challenge 2017 Skin Lesion Analysis Towards Melanoma Detection Part 1: Lesion Segmentation.
متن کاملDense Fully Convolutional Network for Skin Lesion Segmentation
Skin cancer is a deadly disease and is on the rise in the world. Computerized diagnosis of skin cancer can accelerate the detection of this type of cancer that is a key point in increasing the survival rate of patients. Lesion segmentation in skin images is an important step in computerized detection of the skin cancer. Existing methods for this aim usually lack accuracy especially in fuzzy bor...
متن کاملFully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks
Stroke is an acute cerebral vascular disease, which is likely to cause long-term disabilities and death. Acute ischemic lesions occur in most stroke patients. These lesions are treatable under accurate diagnosis and treatments. Although diffusion-weighted MR imaging (DWI) is sensitive to these lesions, localizing and quantifying them manually is costly and challenging for clinicians. In this pa...
متن کاملSkin Lesion Classification Using Deep Multi-scale Convolutional Neural Networks
Melanoma is a malignant tumour originating from melanocytes cells skin cells responsible for the production of melanin. The American Cancer Society estimates that in the United States alone for 2017, more than 87,000 new melanoma cases will be diagnosed and around 9,300 persons are expected to die[1]. Skin melanoma lesions are very challenging to visually diagnose due to their similarity in vis...
متن کاملHigh-performance Semantic Segmentation Using Very Deep Fully Convolutional Networks
We propose a method for high-performance semantic image segmentation (or semantic pixel labelling) based on very deep residual networks, which achieves the state-of-the-art performance. A few design factors are carefully considered to this end. We make the following contributions. (i) First, we evaluate different variations of a fully convolutional residual network so as to find the best config...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Medical Imaging
سال: 2019
ISSN: 2329-4302
DOI: 10.1117/1.jmi.6.2.024001